

Figure 3. Comparison of pressure-composition data at 40 °C for carbon dioxide-n-hexane.

study are lower in *n*-hexane than those of the present study. At 500 psia, this difference is 6 mol %, and the difference in the *K* values for *n*-hexane is $\sim 25\%$.

Correlation

The data from the present work have been correlated by the Soave equation of state (3), with the mixing rules

$$a = \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i}y_{j}a_{ij}$$
$$b = \sum_{i=1}^{N} y_{i}b_{i}$$
$$a_{ij} = (a_{j}a_{j})^{1/2}(1 - C_{ij})$$

where C_{ij} is an empirical interaction parameter. In this work, the value C_{ij} was determined by minimizing the sum of squares, SS, of errors in the predicted phase compositions at fixed temperature and pressure

SS =
$$\sum_{j=1}^{M} \{ (\Delta x)^2 + (\Delta y)^2 \}$$

Table II presents values of C_{ij} evaluated from the data of the present work at each separate isotherm and from all of the data treated simultaneously. Also shown is the result of similar

Table II. Soave Correlation of Carbon Dioxide-n-Hexane Data

temp, °C	ontimum	rms error in a	mole fraction	
	C_{ij}	liquid	vapor	
· · · · · · · · · · · · · · · · · · ·	Prese	nt Work		
40	0.125	0.011	0.002	
80	0.130	0.009	0.004	
120	0.139	0.006	0.013	
all	0.131	0.012	0.009	
	Oghaki an	id Katayama		
40	0.090	0.018	0.006	

treatment of the data of Ohgaki and Katayama at 40 $^{\circ}$ C. As shown in Table II, when all data from the present work are treated simultaneously, root-mean-square (rms) errors of 0.012 and 0.009 result in the liquid- and vapor-phase mole fractions, respectively.

Careful analysis of the data from the present work reveals increased scatter in the data near the critical point. The data were reanalyzed by deleting data points at the two highest pressures on each isotherm; the optimum C_{ij} was unaffected (0.131), but errors in the predicted vapor mole fraction were reduced by a factor of 2 (to 0.005) while the liquid-phase prediction was unaffected. In this case, average absolute errors in the predicted K values are 5% for CO₂ and 6% for *n*-hexane. When all data are included, the errors are 4 and 13%, respectively.

Glossary

- a, b parameters in Soave equation of state
- C_{ii} empirical interaction parameter in Soave equation
- M total number of data points
- N total number of components in mixture
- x mole fraction CO₂ in liquid phase
- y mole fraction CO₂ in vapor phase
- △ difference between experimental and calculated value

Literature Cited

- (1) Yarborough, L.; Vogel, J. L. Chem. Eng. Prog., Symp. Ser. 1967, 63, 1.
- 2) Ohgaki, K.; Katayama, T. J. Chem. Eng. Data 1976, 21, 53.
- (3) Soave, G. Chem. Eng. Sci. 1972, 27, 1197.

Received for review June 9, 1980. Accepted October 3, 1980. Acknowledgement is made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society (PRF No. 9685-AC7), and to the U.S. Department of Energy (E[49-18]-2278) for support of this research.

Excess Gibbs Energy for Eight Oleic Acid–Solvent and Triolein–Solvent Mixtures at 318.15 K

Gev H. Eduljee*[†] and Adrian P. Boyes

Department of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15-2TT, United Kingdom

Vapor pressures of eight oleic acid-solvent and triolein-solvent mixtures have been determined on a static apparatus at 318.15 K. Activity coefficients and excess Gibbs energies have been derived from the data. The solvents with oleic acid are methanol, ethanol, 2-propanol, acetone, and *n*-hexane, while the solvents with triolein are 2-propanol, acetone, and *n*-hexane.

† Present address: Re-Chem International Limited, Southampton S01-3EY, United Kingdom.

Introduction

The C₁₇ and C₁₈ fatty acids and their glycerides are of considerable importance in the soap and food industries. The separation of these high-molecular-weight compounds is generally effected by energy-intensive processes such as fractional crystallization. Alternative methods of separation are liquid extraction and extractive distillation. We therefore examine the excess thermodynamic properties of some fatty acid-solvent and glyceride-solvent systems, to help assess the suitability of these methods.

Table I. Solvent Properties at 318.15 K

_

	P/kPa		$B/(cm^3)$	V/(cm ³	
	exptl	lit. ^a	mol^{-1})	mol^{-1})	
methanol	44.47	44.43	-1464	41.73	
ethanol	23.00	23.00	-1872	59.99	
2-propanol	18.15	18.13	-2126	78.66	
acetone	68.10	68.15	-1606	76.25	
hexane	44.92	44.92	-1617	135.23	

In this paper we report the vapor pressures of eight oleic acid-solvent and triolein-solvent systems at 318.15 K, deter-

mined on a static vapor-pressure apparatus. The solvents chosen for study are methanol, ethanol, 2-propanol, acetone, and *n*-hexane. Triolein is partially miscible in methanol and ethanol at 318.15 K, so these solvents have been excluded from the triolein-solvent group.

Materials

Absolute ethanol was of 99% purity. The remaining solvents were of BDH "Analar" grade and were used without further purification. Oleic acid (99%) was supplied by Unilever Research. Triolein, supplied by BDH Chemicals, was estimated

Table II. Vapor Pressure P, Activity Coefficients f, and Excess Gibbs Energies of Mixing for Oleic Acid- and Triolein-Solvent Systems at 318.15 K

x_1	P/kPa	f_1	f_2	$G^{\mathbf{E}}/(\mathbf{J} \text{ mol}^{-1})$	x_1	P/kPa	f_1	f_2	$G^{\mathbf{E}}/(J \text{ mol}^{-1})$
	r. Meth	$n_0 + r_0$	eic Acid			x, Hexa	ne + x, Ole	eic Acid	
0.000	×1 moun		1 000	0.0	0.000			1.000	0.0
0.029	2.94	2 331	1.000	78.8	0.027	2.48	2.102	1.002	58.6
0.051	4 85	2.331	1 010	130.4	0.061	5.39	2.022	1.007	130.8
0.031	6 27	2.107	1 010	176.5	0.076	6.60	1 986	1 008	157.2
0.071	7.56	2.029	1.010	170.5	0.070	8 97	1 954	1.000	219 7
0.069	12.00	1.950	1.025	210.7	0.104	14 96	1.907	1.015	2676
0.107	13.03	1.000	1.028	337.2	0.100	10.04	1.007	1.055	107.0
0.268	18.86	1.606	1.065	458.0	0.200	13.54	1.070	1 1 0 2	400.7
0.354	22.63	1.45/	1.111	531.8	0.335	24.09	1.552	1.105	585.0
0.456	27.10	1.349	1.164	579.0	0.433	28.04	1.451	1.149	034.0
0.581	31.69	1.235	1.269	588.3	0.524	31./1	1.359	1.210	664./
0.713	36.35	1.152	1.442	543.7	0.606	34.37	1.271	1.317	670.4
0.812	39.66	1.101	1.648	454.6	0.718	38.25	1.191	1.511	639.3
0.930	43.13	1.043	2.048	236.1	0.877	42.81	1.089	2.186	451.8
1.000	44.47	1.000		0.0	0.939	43.86	1.040	2.994	274.1
	x. Etha	$nol + x \cdot Ole$	eic Acid		1.000	44.92	1.000		0.0
0.000			1.000	0.0		x, 2-Pro	$panol + x_{1}$	Triolein	
0.052	1 89	1 604	1 001	67.4	0.000	• -	1	1.000	0.0
0.083	2.96	1.572	1.001	104.1	0.069	4.15	3.359	1.023	276.9
0.000	4.52	1.572	1.002	158 0	0 1 2 9	7.26	3 109	1 034	463.6
0.195	4 .32 6 40	1.521	1.000	130.9	0.258	10.99	2 364	1 103	778.8
0.195	8 96	1 276	1.014	220.0	0.250	12 72	1 963	1 203	952 0
0.200	11 21	1.370	1.057	275 7	0.357	14 04	1.505	1 242	1052.3
0.370	12.05	1.307	1.008	373.7	0.402	15 / 1	1.001	1 6 2 9	1055.5
0.493	15.95	1.238	1.113	421.0	0.007	16.04	1.405	1.030	1055.0
0.615	10.33	1.162	1.18/	418.2	0.000	16.04	1.200	1.00/	983.9
0.700	17.89	1.115	1.268	389.6	0.815	10.95	1.148	2.678	//8.8
0.814	19.68	1.053	1.502	311.2	0.917	17.71	1.065	4.201	467.4
0.936	21.67	1.007	2.129	145.1	1.000	18.13	1.000		0.0
1.000	23.00	1.000		0.0		x_1 Ace	tone $+x$, T	riolein	
	x_1 2-Prop	anol + x, 0	leic Acid		0.000	-	-	1.000	0.0
0.000		•	1.000	0.0	0.099	6.15	0.948	0.999	-16.4
0.041	1.02	1.385	1.006	51.3	0.169	10.60	0.955	0.997	-27.2
0.065	1.59	1.364	1.010	76.8	0.241	15.30	0.964	0.994	-35.4
0.084	2.02	1.344	1.011	92.3	0.318	20.33	0.968	0.993	-40.0
0.156	3.67	1.310	1.017	149.0	0.396	25.54	0.974	0.990	-43.6
0.261	5 70	1 215	1 036	204 5	0.523	34.26	0.983	0.981	-47 9
0.365	7 77	1 1 8 3	1.030	240.8	0.631	41.78	0.989	0.972	-46.1
0.505	9.63	1 1 2 7	1.040	240.0	0.749	50.05	0.903	0.961	-40.3
0.575	11 30	1 000	1 1 00	203.1	0.811	54 45	0.995	0.901	_33.0
0.575	12.64	1.057	1 1 20	233.0	0.895	60 55	0.993	0.930	-21.6
0.738	14.09	1.057	1 1 0 4	277.0	0.055	63.89	0.990	0.941	-21.0
0.750	16.52	1.033	1 209	161 6	1 000	68 10	1 000	0.755	13.0
0.002	17.40	1.0.34	1.308	101.0	1.000	00.10	1.000		0.0
1 000	1016	1.016	1.439	110.0		x_1 Hex	$ane + x_2 T_1$	iolein	
1.000	16.15	1.000		0.0	0.000			1.000	0.0
	x_1 Acet	$one + x_2 Ole$	eic Acid		0.089	4.69	1.204	1.002	48.5
0.000			1.000	0.0	0.144	7.46	1.182	1.006	77.2
0.031	2.86	1.414	1.001	30.9	0.205	10.42	1.157	1.010	99.9
0.056	5.16	1.407	1.002	55.5	0.284	14.17	1.134	1.018	128.1
0.082	7.43	1.383	1.003	77.5	0.382	18.62	1.105	1.031	150.6
0.117	10.45	1.359	1.004	104.2	0.455	21.66	1.077	1.050	159.5
0.211	17.96	1 .29 0	1.014	171.1	0.613	28.47	1.045	1.089	158.5
0.309	25.28	1.235	1.031	228.8	0.681	31.35	1.034	1.112	150.4
0.421	33.73	1.202	1.049	277.9	0.807	36.55	1.014	1.162	106.1
0.471	36.58	1.163	1.077	291.6	0.904	40.68	1.005	1.191	56.4
0.598	44.75	1.115	1.128	300.4	0 .94 7	42.57	1.003	1.222	30.3
0.728	52.84	1.077	1.206	277.3	1.000	44.92	1.000		0.0
0.836	58.98	1.042	1.335	216.1					
0. 94 7	65.10	1.011	1.619	94.9					
1.000	68.10	1.000		0.0					

chromatographically to be of 96% purity, containing small amounts of other fats of comparable molecular weight and constitution. These impurities would be expected to have similar mixing characteristics with the solvents due to the similarity of intermolecular interactions. The vapor pressures of the solvents were measured at 318.15 K and are compared with published values in Table I. The vapor pressures of oleic acid and triolein were not measurable at this temperature.

Experimental Section

The static apparatus used in this investigation has been described by Sassa Konishi, and Katayama (4). The flask and null manometer were enclosed in a thermistor-controlled air bath maintained at 318.15 \pm 0.04 K. A vacuum of 6 \times 10⁻⁴ kPa was applied to the reference limb of the measuring manometer. The manometers were filled with triple-distilled mercury supplied by Belgrave Ltd. which was degassed after every run by heating the limbs with an infrared lamp while the manometers were under vacuum. Bubbles that formed were dislodged by tapping the glass sharply. The degassing procedure for the samples and the operational details are given in ref 4. A correction was made for the amount of the volatile constituent which assumed the gaseous condition in the apparatus. Vapor pressures were read with a cathetometer accurate to 0.1 mmHg. The temperature was monitored with a calibrated glass thermometer accurate to 0.05 K. A change of 0.04 K produced a maximum pressure variation of 7 \times 10⁻² kPa. The standard deviation in pressure measurement was 0.05 kPa, and the standard deviation in G^{E} was 2.0 J mol⁻¹.

Theory

The activity coefficient of a component *i* in a liquid mixture is given by the relation

$$f_i = Z_i P y_i / (P_i^{\ 0} x_i) \tag{1}$$

Z is the vapor-phase nonideality correction factor

$$Z_i = \exp[(P - P_i^{\circ})(V_i - B)/(RT)]$$

Oleic acid and triolein have vapor pressures of less than 10^{-4} kPa at 318.15 K and can be treated as essentially nonvolatile. The oleic acid-solvent and triolein-solvent systems can therefore be regarded as having one-component vapor phases comprising the solvent. Representing the solvent by subscript 1, we have

$$f_1 = Z_1 P / (P_1^0 x_1) \tag{2}$$

 f_1 was calculated from total-pressure data. Molar volumes at 318.15 K were determined from density measurements, and second virial coefficients were interpolated from the tables of Dymond and Smith (2) where data were available. Values for 2-propanol and methanol were estimated by the method of Tsonopoulos (5). Virial coefficients and molar volumes are reported in Table I.

The activity coefficient of the high-molecular-weight compound, f_2 , was calculated by integration of the Gibbs-Duhem equation (eq 3) as described by Lewis and Randall (3). x_1/x_2

$$\ln f_2 = -\int_0^{x_1} \frac{x_1}{x_2} d \ln f_1$$
 (3)

Table III. Constants of the Smoothing Equation $G^{\rm E} = x_1 x_2 \left[\Sigma_i A_i (2x_1 - 1)^i \right]$ J mol⁻¹ and Standard Deviation

component 1	A,	A_1	A_2	A,	A₄	σ/(J mol ⁻¹)
		Oleic /	Acid Sy	stems		
methanol	2346.4	315.1	676.4	348.4	552.4	1.7
ethanol	1679.4	344.1	51.3	372.8	296.9	1.2
2-propanol	1046.5	37.8	164.6	354.9	608.9	1.8
acetone	1179.3	340.3	163.1	173.7	239.7	1.2
hexane	2638.4	562.2	876.7	1114.5	369.9	1.3
		Triole	ein Syst	ems		
2-propanol	4275.5	519.8	270.4	877.9	1495.9	1.2
acetone	-187.7	-24.8	-65.8	1.9	50.0	0.6
hexane	654.8	93.9	41.4	-108.4	-127.0	1.3

was represented as a function of $\ln f_1$ by a polynomial, and this equation was integrated from $x_1 = 0$ to $x_1 = x_1'$ to give $-\ln f_2$ at x_1' .

Results

The experimental results are presented in Table II together with derived activity coefficient and excess Glbbs energy data. G^{E} was fitted to an equation of the type

$$G^{E}/x_{1}x_{2} = \sum_{i} A_{i}(2x_{1}-1)^{i}$$
 (4)

The constants of the smoothing equation and the standard devlation of experimental G^{E} from the smoothing equation are given in Table III.

Glossary

constants in eq 4
second virial coefficient, cm ³ mol ⁻¹
activity coefficient
Glbbs energy, J mol ⁻¹
total pressure, kPa
pure-component vapor pressure, kPa
gas constant
absolute temperature, K
molar volume, cm ³ mol ⁻¹
liquid-phase mole fraction
vapor-phase mole fraction
vapor-phase nonideality correction factor

Subscripts

1, 2, *i* components 1, 2, and *i*

Superscripts E excess property

Literature Cited

- Boublik, T.; Fried, V.; Hala, E. "The Vapour Pressures of Pure Substances"; Elsevier: Amsterdam, 1973.
 Dymond, J. H.; Smith, E. B. "The Virial Coefficients of Gases"; Claren-
- Dymond, J. H.; Smith, E. B. "The Virial Coefficients of Gases"; Clarendon Press: Oxford, 1969.
 Lewis, G. N.; Randall, M. "Thermodynamics"; McGraw-Hill: New York,
- (3) Lewis, G. N.; Handari, M. Thermodynamics ; McGraw-him. New York, 1961.
- (4) Sassa, Y.; Konishi, R.; Katayama, T. J. Chem. Eng. Data 1974, 19, 44.
- (5) Tsonopoulos, C. AIChE J. 1974, 20, 263.

Received for review June 30, 1980. Accepted September 6, 1960.